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Abstract

Recently, the advantages of application of the perturbation technique which is based on joint use of both
the direct and adjoint solutions of the radiative transfer equation to solve and analyze some 1D problems of
atmospheric physics has been demonstrated. In this paper this technique is applied to problems of radiative
transfer through spatially inhomogeneous scattering and absorbing media. This technique is shown to allow
one both to obtain the solution with reasonable accuracy and to get physical insight into the problem under
consideration. The accuracy of the perturbation technique is demonstrated through comparison with results
from the SHDOM simulation code for one problem of cloud optics.
Published by Elsevier Science Ltd.
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1. Introduction

The problem of radiative transfer through an inhomogeneous three-dimensional scattering medium
has a long history and can also be easily traced to corresponding problems in neutron reactor theory
[1,2] (for example, the calculation of the critical mass), so that most modern approaches to describe
radiation propagation [3,4] have a corresponding analog in that theory. Fortunately, the requirements
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on the numerical precision of the estimation of radiation eGects, and of the radiance characteristics,
are not as high as, say, for the critical mass calculation (where a small overestimation might lead to
a catastrophe). Here the possibility to get insight into the nature of the particular problem and/or to
evaluate at the same time the eGect of diGerent variations of the medium parameters on the radiation
+eld characteristics with reasonable accuracy, are sometimes more important than the ability to obtain
an additional “true” digit after the decimal point.

In fact, the modern level of knowledge of the three-dimensional structure of typical media (clouds
in the theory of climate [5], tissue in medical imaging [6]) does not allow one to build optical
models of the corresponding scattering media without introducing some simpli+cation and approxi-
mation, and this undoubtedly leads to the accuracy of the prediction being limited by such lack of
information. This is one of the basic reasons why diGerent approximations (for example, diGusion)
are widely and successfully used to describe the phenomena of radiance propagation both in the
theory of medical imaging and image reconstruction [7], and the study of the radiative eGects of
three-dimensional structure of real clouds [8]. Despite the fact that in some situations an analytical
solution in the diGusion approximation can be obtained as it was done by Davis and Marshak for
the cloud albedo [8], even such a simpli+cation assumes the necessity to solve a second-order dif-
ferential equation with non-constant coeJcients, the solution of which is not always that simple and
obvious.

An important simpli+cation can be achieved if the horizontal inhomogeneity is not strong with
respect to the average characteristics of the medium. This assumption allows one to obtain a simpler
solution using a special numerical technique (for example, the gradient correction method [9]) or to
develop the perturbation approach [10] on the basis of introducing a small parameter into the radiative
transfer equation. Such a technique within the framework of the diGusion approximation was used
by Li et al. [11] to investigate the eGect of a small sine-shape variation of the extinction coeJcient
on the characteristics of the upwelling and downwelling radiation. However, as a rule the variation
of only one parameter, such as the extinction coeJcient, was considered, and it was necessary to
reconsider the problem from the very beginning if variation of another medium characteristic has
to be considered. This drawback is a consequence of the particular perturbation technique that was
used.

A diGerent type of perturbation approach may be formulated on the basis of the joint consideration
of the direct and adjoint formulation of the same problem [12–14]. The most prominent advantage
of this approach is that it allows one to study the eGect of perturbations of diGerent natures (for
example, phase function or single scattering albedo variations) on the radiance characteristics. The
main goal of this paper is to provide general equations relevant to such a perturbation calculation,
which can be used in the optics of horizontally inhomogeneous scattering media. Additionally, we
will demonstrate the ability of this technique, which can make qualitative analysis simpler and
more eJcient, by consideration of selected problems of atmospheric optics, and validate it through
comparison with the results of numerical simulation of the same problem.

The paper’s organization is as follows. Section 2 introduces the basic notation and equations,
which describe both the direct and adjoint radiative transfer equations with the appropriate
boundary conditions. The basic equation of the perturbation approach for the horizontally
inhomogeneous scattering medium can be found in Section 3. Section 4 is devoted to compar-
ison of the perturbation theory prediction with an SHDOM simulation of the same
problem.
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2. Direct and adjoint formulations of the radiative transfer problem

2.1. Direct formulation

Let us consider radiance propagation through a scattering and/or absorbing medium bounded by
a convex surface S (̃r). In this case the equation of radiative transfer [15] may be written as

[̃n · ∇̃+ �e(̃r)]I (̃r; ñ) = �s(̃r)
∫
4�

P(̃r; ñ′ → ñ)I (̃r; ñ′) dñ′ + Q(̃r; ñ): (1)

Here, I (̃r; ñ) is the speci+c radiance at the point r̃ in the direction ñ, ∇̃ is the gradient with
respect to r̃, �e(̃r) and �s(̃r) are the extinction and scattering coeJcients at the point r̃, respectively,
P(̃r; ñ′ → ñ) is the phase function, and Q(̃r; ñ) represents the sources of radiation, such as a laser
beam, solar radiation or internal sources of emission. The phase function is normalized as follows:∫

4�
P(̃r; ñ′ → ñ) dñ= 1: (2)

The boundary condition is formulated on the principle “no radiance comes into the scattering medium
from outside”. In the case of a reMective boundary surface it has the form

I (̃r; ñ) =
1
�

∫
ñ′ ·̃n⊥=�′¡0

M (̃r; ñ; ñ′)I (̃r; ñ′)|�′| dñ′ for r̃ ∈ S (̃r) and ñ · ñ⊥ = �¿ 0; (3)

where ñ⊥ is the normal to the boundary surface, which is directed into the medium, and M (̃r; ñ; ñ′)
is the function which describes the reMection properties of the boundary surface. In the simplest case
of Lambertian reMection, M (̃r; ñ; ñ′) =M (̃r)6 1. In order to simplify the necessary manipulation it
is more convenient to use an operator form of notation. Eq. (1) then takes the form

L̂I (̃r; ñ) = Q(̃r; ñ) (4)

and the transport operator L̂ is obviously de+ned as

L̂= ñ · ∇̃+ �e(̃r)− �s

∫
4�
dñ′P(̃r; ñ′ → ñ) ◦ : (5)

(Note that the notation ◦ is used to indicate that the +nal term is an integral operator, not merely a
de+nite integral.)

2.2. Adjoint formulation

Let the scalar product of two functions g(̃r; ñ) and h(̃r; ñ) be introduced as integration over the
entire range � of the problem variables r̃, ñ

〈g; h〉=
∫
�

∫
g(̃r; ñ)h(̃r; ñ) d̃r dñ: (6)

Note that the characteristics of the radiance +eld in the medium, or the result of any optical mea-
surements, may be written using this scalar product of I (̃r; ñ) and some receiver function R(̃r; ñ):

E =
∫
�

∫
I (̃r; ñ)R(̃r; ñ) d̃r dñ: (7)
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For example, if we calculate the vertical downward Mux F (̃r0) =
∫
2� I (̃r0; ñ)� dñ at the point r̃0, the

receiver function has the form R(̃r; ñ) = ��(�)�(̃r− r̃0) (�(x) is the unit step function); for the case
of a radiance measurement at the point r̃0 in the direction ñ0, R(̃r; ñ) = �(̃r − r̃0)�(̃n− ñ0).
Let us de+ne the adjoint radiative transfer problem as

ˆ̃LĨ (̃r; ñ) = R(̃r; ñ); (8)

where R(̃r; ñ) is the receiver function of the direct problem and ˆ̃L is the adjoint transfer operator,
which obeys the functional relation

〈Ĩ ; L̂I〉= 〈 ˆ̃LĨ ; I〉: (9)

Following a procedure similar to that described by Box et al. [14], one can deduce the explicit
forms of both the adjoint operator

ˆ̃L=−ñ · ∇̃+ �e(̃r)− �s(̃r)
∫
4�
dñ′P(̃r;−ñ′ → −ñ)◦ (10)

and the boundary condition, which the adjoint intensity Ĩ (̃r; ñ) is subject to, namely

Ĩ (̃r; ñ) =
1
�

∫
ñ′ ·̃n⊥=�′¿0

M (̃r;−ñ′;−ñ)Ĩ (̃r; ñ′)�′dñ′ for r̃ ∈ S (̃r) and ñ · ñ⊥ = �¡ 0 (11)

for a reMective boundary, and “no exiting adjoint photons” otherwise. Comparing (3) and (5) with
(10) and (11) we notice that if R(̃r; ñ) = Q(̃r;−ñ) then

Ĩ (̃r; ñ) = I (̃r;−ñ) (12)

and the solution of a given adjoint problem can be obtained through solving the corresponding
direct problem. This means that all the results which can be obtained in the direct formulation
and all the mathematical and numerical techniques developed to solve the direct problem may be
equally obtained and used in the adjoint one and vice versa. The particular method of solution can
be determined from the point of view of calculational convenience or even of personal preference.
More discussion of this point can be found in the paper by Box et al. [16].

2.3. Perturbation technique

As is discussed by Marchuk [12] and Box et al. [14], if we have the solution for both formulations
of a given problem at the same time, we can approximately predict the eGect of a small variation,
�L̂, of the transfer operator L̂, on the result of calculation of the eGect E by means of the simple
formula

�E ≈ −〈Ĩ ; �L̂I〉: (13)

On the face of it, it seems that we have come to the necessity to solve a more complicated problem
than the initial one, so that we need to solve two problems instead of one. However, this impression
does not survive a closer scrutiny. For example, let us consider the problem of radiation propagation
through a three-dimensional inhomogeneous medium, which can be considered as in+nite in the
horizontal directions. Unbroken cloud +elds in atmospheric optics, and tissue in medical imaging,



I.N. Polonsky et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 78 (2003) 85–98 89

are good examples of such media. A natural simpli+cation follows immediately after we represent
the operator L̂ as the sum

L̂= L̂b + �L̂; (14)

where

L̂b = lim
D→∞

∫
D L̂ d̃r⊥∫
D d̃r⊥

; �L̂= L̂− L̂b: (15)

Here r̃⊥ = (x; y)∈D, and D denotes the area of admissible values of x and y. In this case, we
need to solve only the problem of the radiance propagation through a strati+ed horizontally homo-
geneous medium, which is substantially simpler [3,4]. Then, presuming the corresponding adjoint
problem solved, Eq. (13) provides us immediately with an estimation of how small variations of
the medium characteristics, which are arbitrary in their nature, aGect a given radiance character-
istic or radiative eGect under investigation. Note that Eq. (13) accurately describes the +rst order
eGect only, which is reasonably good for a number of problems. Despite its simplicity, this equa-
tion allows one immediately to make some qualitative conclusions based on the symmetry of the
problem.

For example, let us consider the problem of solar illumination of an unbroken cloud +eld, and
consider the eGect of weak horizontal inhomogeneity on the domain average characteristics like
average cloud albedo. In this case, the corresponding receiver function is horizontally homogeneous,
R(̃r; ñ) = R(z; ñ). It follows immediately from (13) that

�E=−
∫ ∫

Ĩ(z; ñ)�L̂I(z; ñ) d̃r dñ

=−
∫

Ĩ(z; ñ)
[∫

�L̂ d̃r⊥
]
I(z; ñ) dñ dz (16)

and since
∫
�L̂ d̃r⊥=0, then �E=0 which means that such characteristics are less sensitive to small

variation, and to calculate them accurately it is necessarily to perform a more detailed calculation,
at least to take into account terms of the second order as was done by Li et al. [17] and Box et al.
[18].

3. Implementation of the perturbation technique at �rst order

To validate the proposed approach let us consider the problem of how a weak sinusoidal inho-
mogeneity in the extinction coeJcient aGects the results of satellite radiance observations [11]. Let
the Sun illuminate a plane parallel cloud with only horizontal variation of the extinction coeJcient:

�e(̃r) = Q�e[1− � sin(k0x)]: (17)

Here Q�e is the average extinction coeJcient, � is the relative amplitude of the perturbation, and k0 is
the wavenumber which describes the characteristic scale of the extinction coeJcient variation. The
single scattering albedo !0 and the phase function are assumed to be the same at all points inside
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the cloud. The source and receiver functions may be written in the form

Q(̃r; ñ) = �0�(z)�(̃n− ñs); (18a)

R(̃r; ñ) = �(̃r − r̃r)�(̃n− ñr): (18b)

Here ñs and ñr are the directions of the Sun illumination and observation, respectively, �0 is the
cosine of the solar zenith angle, and r̃r is the position of the receiver.

Following (14) we subdivide our medium into the base medium, with characteristics which are the
average of the corresponding parameters of the cloud, plus the perturbation. The radiative transfer
operator L̂ for the base medium and the perturbation �L̂ can be written as

L̂= ñ · ∇̃+ Q�e

[
1− !0

∫
4�
dñ′P(̃n′ → ñ)◦

]
; (19a)

�L̂=− Q�e� sin(k0x)
[
1− !0

∫
4�
dñ′P(̃n′ → ñ)◦

]
: (19b)

However, to perform the perturbation calculation using (13) we need the explicit forms of both
I (̃r; ñ) and Ĩ (̃r; ñ) for all possible values of (̃r; ñ). We shall discuss only the solution in the di-
rect formulation since as mentioned above, the same technique can be used to solve the adjoint
problem.

Having assumed the necessity to perform an integration over angles in (13), it is convenient to
use the spherical harmonics or PN approximation [3,19,20], which can be obtained by expansion of
I (̃r; ñ) into spherical harmonics and assuming that only a limited number of expansion coeJcients
are signi+cantly diGerent from zero. In this case I (̃r; ñ) has the form

I (̃r; ñ) =
1
4�

M∑
m=−M

Nm∑
n=m

(2n+ 1)Pm
n (�) 

m
n (̃r)eim"; (20)

where M and Nm are parameters which determine the order of the approximation, and hence its
accuracy. As discussed in the book by Lenoble [3] there is no explicit rule to estimate how large
M and Nm should be to meet a given accuracy requirement, and only numerical experimentation
can help to estimate them properly. To +nish this short introduction into the spherical harmonics
approximation it should be added that representation (20) does not satisfy the boundary condition
(3) exactly at every ñ, and that is why either the Marshak [21] or Mark [22] forms of discretization
are usually used. The discussion about their advantages can be found in Refs. [1,19,23].

A further simpli+cation comes from the particular shape of the inhomogeneity chosen. Note that,
because of our base medium’s symmetry, it is clear that the adjoint intensity Ĩ (̃r; ñ) depends on the
spatial variable r̃⊥ = (x; y) in the form

Ĩ (̃r; ñ) = Ĩ(z; r̃⊥ − r̃⊥r ; ñ); (21)

where r̃⊥r is the horizontal position of the receiver. This means that the eGect variation �E(̃rr⊥) can
be written as

�E(̃rr⊥) =−
∫ ∫

�

∫
Ĩ(z; r̃⊥ − r̃r⊥; ñ)�L̂(̃r⊥)I(z; ñ) d̃r⊥ dz dñ: (22)
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In this situation it is simpler to consider not the functions I (̃r; ñ) and �E(̃rr⊥), but their Fourier
transforms with respect to r̃⊥:

I(z; k̃ ; ñ) =
∫ ∞

−∞
exp(−ĩkr̃⊥)I (̃r⊥; ñ) d̃r⊥; (23a)

E(̃k) =
∫ ∞

−∞
exp(−ĩkr̃⊥)E(̃r⊥) d̃r⊥: (23b)

We can now rewrite formula (13) for the eGect using Fourier transforms of the corresponding
function and operator, and the convolution theorem, to obtain

�E(̃k) =−
∫
�

∫
Ĩ(z; k̃ ; ñ)�L̂(̃k)I(z; ñ) dñ dz: (24)

Note also that in Fourier space the transfer operator L̂b for the base case, and its variation �L̂, have
the forms

L̂b(̃k) = �
d
dz

− ĩn⊥ · k̃ + Q�e

[
1− !0

∫
4�
dñ′P(̃n′ → ñ)◦

]
; (25a)

�L̂(̃k) = 2�2i� Q�e[�(̃k − k̃0)− �(̃k + k̃0)]
[
1− !0

∫
4�
dñ′P(̃n′ → ñ)◦

]
: (25b)

Comparing this form of L̂ with the corresponding form of the transfer operator for the one-dimensional
problem [15], it may be seen that they are formally equivalent if we consider (ĩn⊥ · k̃) as an addition
to the extinction coeJcient (in fact, an imaginary absorption). This means we have managed to
simplify the initial problem substantially. To conclude discussion about the computational technique
used, it should be noted that the spherical harmonics approximation allows all integrals of the ra-
diance over angles to be estimated with high accuracy, but unavoidable oscillations in the radiance
angle distribution appear near the boundary. To improve the situation an iteration procedure [3]
based on using the formal solution of the radiative transfer equation may be used. The additional
advantage of this procedure is that smaller M and Nm, which characterize the number of terms taken
into account in the expansion (20), may be used to obtain a suJciently accurate solution. We will
refer to it as the “improved” spherical harmonics approximation.

4. Comparison with the SHDOM

How accurate is our technique? To answer this question we performed a simulation of the eGect
of a small modulation of the extinction coeJcient on satellite observation using two techniques: the
perturbation approach and SHDOM code [24], which is freely distributed [25]. We considered a
slab of scattering medium, which had geometrical thickness, H , and was characterized by the single
scattering albedo !0 = 1:0 and Henyey–Greenstein phase function [26], de+ned as

P(cos $) =
1
4 Qu

1− g2

[1 + g2 − 2g cos($)]3=2
: (26)

Here $ is the scattering angle, and g is the asymmetry parameter of the phase function.
The base medium is a homogeneous slab characterized by the extinction coeJcient Q�e, which

provided an average optical thickness of Q�eH = 10:0. The extinction coeJcient dependence of the
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perturbed medium in the form (17) has the same Q�e, with k0 = 0:1 Q�e and �=0:1. The optical length
of the extinction coeJcient oscillation period is 2� Q�e=k0 = 20� ≈ 62:8.

For this problem as follows from (23)–(25) the eGect variation, �E, in real space has the form

�E(̃r⊥) =
�
2i
['(̃k0) exp(ĩk0 · r̃⊥)−'(−k̃0) exp(−ĩk0 · r̃⊥)]; (27)

where

'(̃k) =
∫ ∫

Ĩ(z; k̃ ; ñ)
[
I(z; ñ)− !0

∫
4�

P(̃n; ñ′)I(z; ñ′) dñ′
]
dz dñ: (28)

Taking into account that Ĩ(z; r̃⊥; ñ) is real and, hence,

Ĩ∗(z; k̃ ; ñ) = Ĩ(z;−k̃ ; ñ); (29)

where (∗) denotes an operation of complex conjugation, it is clear that

'∗(̃k) ='(−k̃): (30)

Representing '(̃k) as

'(̃k) = ((̃k) exp[iU"(̃k)]; (31)

where ((̃k) = |'(̃k)| and U"(̃k) = arg['(̃k)], we obtain immediately that

�E(̃r⊥) = �((̃k0) sin[̃k 0̃r⊥ +U"(̃k0)]: (32)

To perform the SHDOM simulation a spatial grid of 120 × 50 in the x–z plane, and an angle
resolution of 16 streams with 32 azimuthal modes was used (in SHDOM terminology [24]). The
improved spherical harmonics approximation was used to solve both the direct and adjoint problems
for the base medium during the perturbation technique calculation. It was found that M = 3 and
Nm = 7 are enough to achieve an accuracy 6 0:5% in the estimation of the corresponding radiance
for our particular problem when g6 0:5.

The results of the perturbation calculation (solid lines) and SHDOM simulation (depicted by the
marks) are shown in Fig. 1 for g = 0 and Fig. 2 for g = 0:5, for a solar zenith cosine �0 of 1.0
(labeled 1) and 0.3 (labeled 2). We see that the phase of the oscillation of the observed upwelling
radiation along the x-axis for �0 = 0:3 does not coincide with the phase of the extinction coeJcient
modulation, while it does for �0=1:0, by symmetry. We call this phenomenon a “shift” following Li
et al. [11]. The reason for the shift is clear and follows immediately from the low order scattering
consideration of the optimal route which the light has to follow to produce the maximum upwelling
radiance.

Comparison of the perturbation technique prediction with the outcome of the SHDOM simulation
shows that they coincide reasonably well. As seen from these two +gures, the perturbation technique
provides an accurate estimation of both the amplitude of the oscillation and the shift. However, there
is some deviation between the perturbation technique and the SHDOM results (the asymmetry of the
real oscillation with respect to the zero line; the real shape of the oscillation diGers slightly from the
form of a perfect sine curve), which appears because the perturbation technique takes into account
only the eGect of the +rst order term with respect to �L̂. To describe such an eGect at least the
second or possibly higher order terms should be incorporated as was done by Li et al. [17] in the
diGusion approximation. The full formalism for higher order terms for the general radiative transfer
theory is developed in the accompanying paper by Box et al. [18].



I.N. Polonsky et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 78 (2003) 85–98 93

-40 -20 0 20 40 60 80 100
-10

-8

-6

-4

-2

0

2

4

6

8
x 10

-3

σ
e

x

δE
, [

a.
u]

 shift

2

1

_ -40 -20 0 20 40 60 80 100
-10

-8

-6

-4

-2

0

2

4

6

8
x 10

-3

σ
e

x

δE
, [

a.
u]

 shift

2

1

_

Fig. 1. The eGect variation �E as a function of Q�ex cal-
culated using the perturbation approach (solid line) and
the SHDOM (symbols). The average cosine of the phase
function, g, is 0. The cosine �0 of the solar zenith angle
is 1.0 (1) and 0.3 (2).

Fig. 2. The same as Fig. 1, but g= 0:5.

Within the framework of the perturbation approach, as follows from Eq. (32), the shift can be
estimated just as U"(̃k0) = arg['(̃k0)], and it does not depend on the relative amplitude of the
extinction coeJcient variation, �. We emphasize once more that our perturbation consideration can
describe only the +rst-order eGects which may be insuJcient to describe all parameters with high
enough accuracy, and signi+cant error in some characteristics may appear. To make the situation
clearer let us study how the “shift” depends on the phase function asymmetry parameter. The simu-
lation was made for the same cloud model as above for three values of g: 0.0, 0.5 and 0.85. Fig. 3
shows the results of the perturbation technique (depicted by the solid lines) and the estimation based
on the SHDOM simulation data (marks), where the “shift” is calculated as the oGset between the
horizontal positions of the upwelling radiance maximum for the slanted and normal illumination.
We see that the accuracy of the perturbation approach prediction decreases with an increase of the
asymmetry parameter of the phase function.

What is the reason for such a disagreement? To understand it let us analyze Eq. (13) taking into
account (19)

�E= � Q�e

[
−
∫
�

∫
Ĩ (̃r; ñ) sin(k0x)I(z; ñ) d̃r dñ

+!0

∫
�

∫
Ĩ (̃r; ñ) sin(k0x)

∫
4�

P(̃n; ñ′)I(z; ñ) dñ′ d̃r dñ
]
: (33)
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Fig. 3. The “shift” of the maximum of the upwelling
radiance as a function of the cosine �0 of the solar
zenith angle calculated using the perturbation approach
(solid line), the SHDOM (marks), and the perturbation
approach with the rede+ned phase function (dashed line).
The average cosine of the phase function, g, is 0.0 (1,
triangles), 0.5 (2, circles), and 0.85 (3, squares).

Fig. 4. The “shift” of the maximum of the upwelling
radiance as a function of k0= Q�e. The average cosine of
the phase function, g, is 0.0. The +gures at the curves
show the solar zenith cosine �0.

This equation explicitly suggests a model of the phenomenon considered: the variation of the eGect,
�E, can be represented as a sum of independent contributions from all optical depths. One of the
consequences of such a model is that the eGect of the extinction coeJcient variation is overestimated.
This leads to an underestimation of the “shift”. To improve the situation we should include even
approximately the interaction between neighboring layers. The simplest approach follows from the
fact that light scattered through small angles behaves similar to unscattered light: it propagates in
approximately the same direction, and hence should be treated as unscattered light rather than being
removed. Such a problem can be addressed by a rede+nition of the phase function as is done within
the �-Eddington approximation [3]

P(cos $) =
1
4 Qu

g�(1− cos $) + (1− g): (34)

Now we may expect that the quality of the perturbation prediction will improve. The numerical
simulation results (shown in Fig. 3 by dashed lines) con+rm our expectation. We should point out
that the eGective medium is of quite common use to obtain a physically adequate model adjusted to
study some particular phenomenon [4,8,20].

To complete the study of the “shift” let us consider how it depends on the wavenumber, k0. We
performed calculations for our model medium with a phase function asymmetry parameter of 0.0. Fig.
4 shows the results of our simulation for several solar zenith cosines, the values of which are depicted
by the numbers beside the curves. As can be seen from in this +gure, at small k0 ¡ 0:25 Q�e, the smaller
�0 the greater the “shift”, but when k0 ¿ 2:0 Q�e the dependence becomes opposite in character. This
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Fig. 5. Amplitude coeJcient ( as a function of k0= Q�e.
The average cosine of the phase function, g, is 0.0. The
+gures at the curves show the solar zenith cosine �0.

Fig. 6. The upwelling zenith radiance pro+le as a func-
tion of k0x simulated using the SHDOM. The average
cosine of the phase function, g, is 0.0. The wavenumber
k0 is 1:0 Q�e (dotted line), 2:0 Q�e (solid line), and 3:0 Q�e

(dashed line).

means that the less optically dense regions reMect more radiance than more dense regions. This
phenomenon was described by Li et al. [11] as correlated and anticorrelated distributions. We can
obtain additional information by analyzing how ((̃k0) depends on k̃0, which is depicted in Fig. 5.
The +gure shows that when k0 ≈ 2:0 Q�e and the direction of Sun illumination is close to the normal,
the amplitude coeJcient, ((̃k0), tends to be quite small, and hence, the expected variation of the
measured upwelling radiance should also be small and as a result the satellite measurements may
not allow one to distinguish such a perturbed medium from a homogeneous one. Note that this
phenomenon can be observed only when the solar angle cosine �0¿ 0:999. To check this prediction
of the perturbation approach we performed SHDOM simulations for the case �0=1:0; the results are
shown in Fig. 6: k0 = 1:0 Q�e (dotted line), k0 = 2:0 Q�e (solid line), and k0 = 3:0 Q�e (dashed line). From
the +gure we see that for k0 = 2:0 Q�e the upwelling radiance pro+le has substantially less oscillation
amplitude and does not resemble a sine shape at all.

To understand why the anticorrelated distribution appears is simpler by considering a modi+cation
of our sunlight propagation problem. The formal solution of the radiative transfer equation [3] makes
it possible to think that at every depth z there is a plane source with an angular pattern I(z; ñ) and
the solution of this problem is exactly equivalent to our sunlight propagation problem. It is clear that
each source contributes to the upwelling radiance, and this contribution is a mixture of the direct and
scattered radiance. The scattered radiation travels through a diGerent area following a random path
before it reaches the receiver. If the characteristic length of the extinction coeJcient variation is small
enough, then the scattered radiance distribution gets averaged and becomes homogeneous with respect
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to the horizontal coordinate, whereas the direct radiance travels directly into the direction of the
receiver and is attenuated along this path depending on the extinction coeJcient at a given horizontal
coordinate. It is clear that the less the extinction coeJcient the greater the relative contribution of
the direct radiance and an anticorrelated distribution appears.

Fig. 6 also provides us with an estimation of when the independent pixel approximation [27] (IPA),
which is based on the solution of a one-dimensional problem, can be used. If the assumptions which
the IPA is based on are applied to the derivation of Eq. (32), we may deduce that the eGect variation
in the IPA has the form

�EIPA(̃r⊥r) = �((̃k0 = 0) sin[̃k 0̃r⊥]: (35)

Direct comparison with Eq. (32) shows that the IPA can be used when ((̃k0 = 0) ≈ ((̃k) (we are
not discussing the applicability of the IPA with respect to the “shift” as this phenomenon cannot be
described at all within the framework of the IPA). An examination of Fig. 6 shows that the IPA
can be used with an accuracy ≈ 10% if k0 ¡ 0:2 Q�e. However, this estimation is quite rough as the
more accurate answer obviously depends on the sun angle.

To +nalize our discussion, it is important to consider the question: how strong a variation of
the extinction coeJcient can be studied using the perturbation technique. Unfortunately, the answer
cannot be provided consistently within the framework of the method without performing simulations
and then we can estimate the validity of the result obtained through comparison of the perturbation
term with the base problem solution. If their contributions are substantially diGerent we may ex-
pect that the perturbation technique has managed to provide an accurate solution for that particular
problem. However, it is more interesting to validate the perturbation technique using more accurate
simulation methods. To do this we should +rst +nd a criterion for applicability of the perturbation
technique. Considering Eq. (32) we may deduce that the ratio �E(̃r⊥)=� does not depend on the
extinction coeJcient variation strength �. This result is a consequence of our +rst-order consid-
eration and can be used as the criterion that we are looking for. We calculated this ratio using
the SHDOM for k0 = 1:0 Q�e, g = 0:0, and several values of sun angle cosine �0: 1.0, 0.9 and 0.5.
Fig. 7 shows that even for comparatively large variation strength, ”=0:5, and oblique sun illumina-
tion, the shape deviation is not pronounced and according to our criterion the perturbation technique
may be successfully applied and used.

The case of normal sunlight incidence needs to be considered separately. From the +gure we see
that although the lines have approximately the same shape, the average level of these lines goes
down with increasing �. As follows from our criterion to describe this eGect at least the second
order perturbation calculation should be incorporated. However, the diGerence between lines which
corresponding to �= 0:1 and 0.2 is not large and can be neglected in many problems.

5. Conclusion

In the present paper we have implemented the +rst-order perturbation approach, based on joint use
of the adjoint and direct solutions. The most obvious advantage of such a technique is independence
on a particular form of the medium inhomogeneity. All kinds of possible perturbation, like spatial
inhomogeneity of aerosol composition, variation of the single scattering albedo, or phase function
characteristics, can be considered and calculated during a single run.
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The comparison with the SHDOM shows that the developed approach provides high enough accu-
racy of numerical simulation, especially if the sensitivity to diGerent forms of medium perturbation
is under investigation. Another advantage is that our approach is free from the limitations of the
diGusion approximation, which has often been used to solve similar problems.

To conclude, we should note that the developed approach allows one to include polarization eGects
with no great diJculty: a problem which the authors will focus on in the near future.
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